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1 SUMMARY 

In this work we study evaluate several techniques, including image segmentation and 

classification, and feature (algorithm) ranking within the content-based image retrieval 

(CBIR) framework to evaluate the CBIR performance in object recognition and 

classification. A recent survey of CBIR techniques can be found in [1]. 

We also analyze the performance of various segmentation algorithms, in particular of 

active contour-based segmentation techniques, when applied to the extraction of specific 

object including weapons, humans, and planes. 

Self-nomination is the process by which an algorithm and feature-types, “optimal” for a 

given specific object type, are selected within a pool of available ones. The selection 

process is carried out by assigning higher weights based on the level of performance of 

each algorithm. In this work we proposed two approaches: the first is based on dictionary 

learning whereas the second uses a multiple kernel learning technique. Both approaches 

are studied in details and their results on a sample dataset are presented. 

  

Approved for Public Release; Distribution Unlimited.   
1 

 



2 INTRODUCTION 

Recent efforts in learning from image data sets include selecting the salient features and 

combining them for the purpose of content-based image retrieval [1], [2], [3]. In such 

approaches a set (pool) of feature-types is first selected manually and then a specific 

technique is applied to choose the most salient (individual) features from each feature-

types in the set. Once the salient features are selected, they are combined and used in the 

retrieval process via a classifier. Two important questions, that still remain unanswered 

by these approaches, are: “which feature-types do we need to compute for retrieving a 

specific object type?” and “is one feature-type sufficient and generic enough to retrieve 

images accurately from each object class?” In this report we present a technique that 

answer these questions that are related to how well a feature-type can discriminate 

between different object categories.  

In the last three decades, numerous techniques have been proposed to localize and 

summarize the salient features of an image. Recent examples include the scale-invariant 

feature transform (SIFT) [4], dense-SIFT [5], histograms of oriented gradients (HOG) 

[6], Gabor features [7], D-nets [8] and local symmetry features [9]. Different studies have 

proposed different combinations of feature-types to gain higher accuracies. For example 

in [10] a combination of HOG and local binary patterns is used to increase the detection 

of humans as opposed to using exclusively HOG features whereas in [11] is reported that 

a combination of SIFT, HOG and color information yields an increased accuracy in 

flower classification respect to the use of each feature-type individually.  

These examples illustrate that different feature-types will perform optimally on 

different class of objects and that the choice of the salient feature-type, or combination 

there of, becomes critical. The automatic selection of the salient feature-types for a 

specific category not only helps increasing the accuracy, as opposed to using single 

feature-type, but also reduces the computational and storage requirements since, in many 

cases, before selecting individual features, all the features for each feature-type need to 

be computed and stored.  

This report presents a prototype self-nomination approach that, for each category, can 

select the most salient feature-types from a given pool of feature-types. In particular we 

propose two different approaches: the first is based on a dictionary learning technique 
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whereas the second utilizes a multiple kernel learning (MKL [12]) method. In addition 

to our prototype self-nomination approach, as a part of this work, we developed and 

implemented a graphical user interface (GUI) that allows the user to apply several 

different segmentation algorithms to a given image and provides visualization of the 

segmented regions.  

We used a subset of the ImageNet [13] database in our experiments. 

Part of the contract items are addressed in the main text and the rest are 

addressed in the appendix. 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES  

In this section, we provide a theoretical background for the segmentation techniques, 

feature types and algorithms used in this report. 

3.1 Segmentation techniques  

Active Contour based segmentation using manual initialization: Implements an 

active contour based segmentation technique with Vector field convolution (VFC) as 

external field. The initialization of the segmentation is done manually. Here the 

initialization is achieved by selecting a contour encompassing the object of interest in the 

image. The final segmentation is obtained by further refining the initialized contour by 

active contour models, constrained by external forces and image forces that pull it 

towards image features like lines and edges. More information on this method can be 

obtained in [14]. 

Active Contour based segmentation using automatic initialization with intensities: 

Implements Poisson inverse gradient algorithm [15] for automated segmentation, and an 

active contour method for elastic delineation of objects in the analyzed images. The main 

thrust of the approach is an automatic initialization of the active contour by estimating the 

underlying external energy field. In this method, the external energy is influenced by the 

image intensities. 

Active Contour based texture segmentation using automatic initialization with 

intensities and texture: Another implementation of Active Contour based segmentation 

with automatic initialization by Poisson Inverse gradient method [15]. The main 

difference, introduced by this method, is that the external force field is generated as a 

weighted combination of intensity and texture force fields. The intensity part is computed 

as the vector field convolution as described in [14]. The textural field is computed at each 

location 𝑠𝑠 and angular orientation 𝜃𝜃 as: 

Etexture(𝑠𝑠, 𝜃𝜃) = � |𝑱𝑱𝑖𝑖(𝑥𝑥,𝑦𝑦) ∗
𝑁𝑁

𝑖𝑖≤1

𝐺𝐺𝜎𝜎,𝜃𝜃
′ (𝑥𝑥,𝑦𝑦)| (1)  

where 𝐺𝐺𝜎𝜎,𝜃𝜃
′ (𝑥𝑥,𝑦𝑦)  is the derivative of the Gaussian function, 𝐺𝐺𝜎𝜎 = 1

√2𝜋𝜋𝜎𝜎
exp �− 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2
� , 

with scale parameter 𝜎𝜎 and angular direction 𝜃𝜃, 𝐽𝐽𝑖𝑖(𝑥𝑥,𝑦𝑦) is the magnitude response of the 
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Gabor filter [16],  for 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 filter banks. Equation (1) gives the edge energy in an 

image. The texture field is obtained by evaluating the probability of finding a boundary 

nearest to the location s. This is done by assessing the prediction error of the edge energy 

along direction 𝜃𝜃 and 𝜃𝜃 + π at that location. The texture prediction error 𝑒𝑒(𝑠𝑠, 𝜃𝜃) and the 

probability of edge detection 𝑝𝑝(𝑠𝑠,𝜃𝜃)  are given respectively by 

 ∑ |𝑱𝑱𝑖𝑖(𝑥𝑥,𝑦𝑦) ∗𝑁𝑁
𝑖𝑖≤1 𝐷𝐷𝐷𝐷𝐺𝐺𝜎𝜎,𝜃𝜃(𝑥𝑥,𝑦𝑦)|  and 𝑒𝑒(𝑠𝑠,𝜃𝜃)

𝑒𝑒(𝑠𝑠,𝜃𝜃)+𝑒𝑒(𝑠𝑠,𝜃𝜃+𝜋𝜋)
. Here 𝐷𝐷𝐷𝐷𝐺𝐺𝜎𝜎,𝜃𝜃(𝑥𝑥, 𝑦𝑦)  is difference of 

Gaussians function evaluated along the angular direction 𝜃𝜃. Thus the texture force field is 

obtained as:  

𝑭𝑭𝑡𝑡𝑒𝑒𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝑠𝑠) = � Etexture(𝑠𝑠,𝜃𝜃)
Θ(s)≤𝜃𝜃≤Θ(s)+𝜋𝜋

𝑒𝑒𝑗𝑗𝜃𝜃 (2)  

where Θ(s) = argmin𝜃𝜃 ∑ 𝑝𝑝(𝑠𝑠,𝜃𝜃′)𝜃𝜃≤𝜃𝜃′≤𝜃𝜃+𝜋𝜋 . 

The details of texture field formulation can be found in [17]. 

Area morphological operator based segmentation: This is an automated 

segmentation method.  This segmentation technique is based on area morphological 

operators, which manipulate the connected components. These operators are used to 

remove image segments based on their area while retaining larger segments or objects. 

Detailed description of this method can be found in [18].  

3.2 Features 

Scale-invariant feature transform (SIFT): SIFT algorithm first looks for important 

descriptor pixels to summarize the entire image. Once the algorithm determines the 

important pixels (i.e., the descriptors), it computes local gradient histograms around each 

descriptor to summarize each descriptor locally by forming a 128-dimensional features 

for each descriptor pixel (point). More details can be found in [4]. 

Histograms of oriented gradients (HOG): HOG algorithm forms small overlapping 

image patches from a given image and then for each patch, it computes local gradient-

based histograms. More details on HOG can be found in [6]. 

Color histograms: A color histogram forms bins in the red-green-blue (RGB) space 

and maps each pixel of a given image into one of these bins. The resulting histogram is 

called color histogram of the given image.  Color histogram for hue-saturation-value 
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(HSV) is obtained in the same way by first converting the RGB to HSV space and then 

by applying the binning process in the HSV space. 

Local binary pattern: Local binary pattern (LBP) is another feature type that captures 

the texture information on the image. This information is obtained by comparing the 

intensity value of a pixel with its neighboring pixel values. Further details can be found in 

[19]. 

Gabor features: Gabor features are mainly used as texture descriptors. The feature is 

obtained by convolving an image with a sinusoid modulated Gaussian of varying 

orientations and scale and then extracting the mean and variance of the response. Further 

details are available in [20],[7]. 

Fourier shape descriptor: Fourier shape descriptor is used to encode the shape 

information of a 2-D object. The main idea is to compute the frequency response of the 

contour of the object. Each point on the contour taken sequentially can be viewed as a 

signal. The Fourier transform of this signal provides the Fourier shape descriptor. Further 

details for this feature type can be found in [21], [22]. 

3.3 Compact feature representation 

Bag-of-Features approaches: Bag of visual features approaches [23] (also known as 

bag-of-words, BoW) are used to map a set of multiple image features into a single 

histogram. In these approaches, the entire data space is quantized into a fixed number of 

bins and a histogram is generated by mapping each feature into one of the bins. While 

there have been many different approaches proposed to form such histograms, all such 

techniques fundamentally focus on how to represent and compute the histogram bins. K-

means, Fisher encoding, Vlad and dictionary learning based approaches have been widely 

used in the literature.  
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Figure 1: Flow of process creating the BoW histogram. 

Figure 1 illustrates the flow of processes of creating the BoW histogram fi   for image i. 

For each image, first various feature types such as SIFT and HOG, and then each set of 

feature-types (i.e., the set of SIFT features and the set of HOG features) are mapped into 

a fixed length histogram. Thus, while the total number of computed SIFT descriptors may 

chance from one image to the next, the length of BoW histograms for SIFT features will 

be the same for each image. Below, we briefly describe different ways to create BoW 

histograms.  

K-Means: K – means algorithm is a clustering algorithm that first partitions the data 

space into K number of clusters (sets), and then it assigns (labels) any given vector xj into 

one of those K cluster centers based on their Euclidian distance to the cluster centers ci 

such that the sum of the distances (the cost function Q) between the assigned data vectors 

𝐱𝐱𝑗𝑗𝑖𝑖 and their cluster centers ci is the minimum [24]. The value of K is determined by the 

user. 

𝑄𝑄 = � ��𝐱𝐱𝑗𝑗𝑖𝑖 − 𝐜𝐜𝑖𝑖�
 

𝑥𝑥𝑗𝑗∈𝑐𝑐𝑖𝑖

𝐾𝐾

𝑖𝑖=1

 (3)  

Fisher Vector: Fisher vector encoding is another method for mapping the computed set 

of features into a histogram. In order to form a Fisher vector, the data set is first divided 
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into K number of Gaussian distributions (as a Gaussian mixture model), and then both 

mean and variance information are decoded into the Fisher vector. Therefore the size of a 

Fisher vector histogram is 2KN (where N is the feature vector dimension and the value of 

K is predetermined by the user). More information on Fisher vectors can be found in 

[25]. 

Spatial Pyramid: The spatial pyramid method is used to partition the image into 

smaller patches and compute feature histograms for each of those patches (sub-regions). 

The final feature is obtained by concatenating the feature histogram of the entire image 

along with the histograms of the sub-regions. 

 

 
 

(a) (b) 
Figure 2: Spatial pyramid computation for a sample image. (a) shows how an image is divided into 
sub-regions and the feature histogram for each of the sub-region is computed. (b) The histograms 
computed in (a) is then concatenated to form one single histogram which now serves as the feature of 
the image. 

This feature type incorporates spatial information into the histogram. The K-means 

algorithm as described in the previous section is also utilized here for computation of the 

feature histogram. This method is described in details in [26]. Figure 2 shows the basic 

steps of computing the spatial pyramid histogram for a given sample image. 

3.4 Classifiers 

In this work, due to their widely accepted generalization performance, we used kernel-

based machine learning algorithms including support vector machines (SVM) and their 

variant: multiple kernel learning (MKL).  In addition to those two, a dictionary learning 

based classifier was also implemented which exploits the sparsity in the dataset. 

……. 
……. 
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Support Vector Machines:  For a given test (feature) vector x and a set of training 

data TD={(x1,y1), (x2,y2),…, (xn,yn)}, where yi is the label of xi and n is the total number 

of training samples, SVM [28] uses the following formulae to estimate its label yi: 

𝑦𝑦 = sgn(𝑓𝑓(𝒙𝒙)) (4)  

and 

𝑓𝑓(𝒙𝒙) = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝒙𝒙,𝒙𝒙𝑖𝑖) − 𝑏𝑏
𝐾𝐾

𝑖𝑖=1

 (5)  

where αi is a nonzero Lagrange multiplier for each SV xi, yi ∈{-1,+1} is the class label, k 

is the number of support vectors, and b is the bias value. K(.) is the kernel function that 

gives a measure of the similarity in a reproducing kernel Hilbert space [27], [28], [29]. 

The αi values in (5) are learned by maximizing the dual optimization problem Q(α): 

                                              (6) 

subject to:                 and    C ≥ αi  ≥0,                                      (7) 

where C is a pre-specified constant. Eq. (6) can be written in a matrix form: 

Hαααcα TTQ
2
1)( −=                                                           (8) 

where c= [ 1 1 1 ..1]T, α= [α1, α2,…, αn]T. H is the Hessian matrix where Hi,j = Ki,jRi,j and 

where: 

),( jiij K xxK = ,     ],...,,[],...,,[ 2121 n
T

n yyyyyy=R                                (9) 

In this work, we use Gaussian kernel function defined as  𝐾𝐾�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� = 𝑒𝑒
1

2𝜎𝜎2
�𝐱𝐱𝑖𝑖−𝐱𝐱𝑗𝑗�

2

where 

the σ value is a user specified scalar parameter. 

Multiple Kernel Learning: MKL model is proposed to estimate the optimal kernel 

[30]. It models the kernel function as a linear combination of t different kernel functions 

such that:  

𝐾𝐾(𝒙𝒙1,𝒙𝒙2) = � 𝛽𝛽𝑚𝑚𝐾𝐾𝑚𝑚

𝑡𝑡

𝑚𝑚=1

(𝒙𝒙1,𝒙𝒙2) 

subject to ∑ 𝛽𝛽𝑚𝑚 = 1𝑡𝑡
𝑚𝑚=1  

(10) 

1 1 1

1( ) ( )
2

n n n

i i j i j
i i j

Q y y Kα α α α
= = =

= −∑ ∑∑ i jx , x

∑
=

=
n

i
ii y

1
0α
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where βm is the weight for the mth kernel. Applying (10) in (6) yields a new cost function 

for MKL:            

𝑄𝑄(𝛼𝛼,𝛽𝛽) = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 � 𝛽𝛽𝑚𝑚�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗�

𝑡𝑡

𝑚𝑚=1

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 (11) 

The survey paper in [31] studies the performance of various related MKL techniques. 

In this paper, we use simpleMKL [32] to compute the weights. simpleMKL employs a 

two-step optimization process in which the kernel weights βm are optimized by fixing the 

αi values, and then αi values are optimized by fixing the βm values. The final values of βm 

reveal the importance (the saliency) of the mth kernel function. 

Dictionary learning based classifier: Sparse coding can be efficiently utilized by 

representing a feature vector 𝑌𝑌 as a linear combination of some basis vectors. This can be 

written as 𝑌𝑌 = 𝐷𝐷𝐷𝐷, where 𝐷𝐷 is a matrix in which columns represent the basis vectors, 

which we call dictionary, and 𝐷𝐷 contains the representative sparse codes. The motivation 

for sparse coding for classification is that projects the data on smaller dimensional 

subspaces while maximizing the separation between data i.e., similar type of data will 

share similar subspaces. The purpose is to build class representative dictionary, so that 

sparse codes generate for features belonging to the same class, share similar dictionary 

atoms. We solve the following optimization to obtain the desired dictionary. 

argmin
𝑋𝑋,𝐷𝐷,𝐴𝐴,𝑊𝑊

𝒞𝒞(𝐷𝐷,𝐷𝐷,𝐴𝐴,𝑊𝑊)    

  𝒞𝒞(𝐷𝐷,𝐷𝐷,𝐴𝐴,𝑊𝑊) =        ‖𝑌𝑌 − 𝐷𝐷𝐷𝐷‖22 + 𝛾𝛾��̇�𝓧 − 𝑰𝑰𝐷𝐷�
2
2

+ 𝛼𝛼‖𝑄𝑄 − 𝐴𝐴𝐷𝐷‖22 +

 𝛽𝛽‖𝐻𝐻 −𝑊𝑊𝐷𝐷‖22  
(12) 

s. t  ‖𝑥𝑥𝑣𝑣‖0 ≤ 𝑡𝑡  ∀𝑣𝑣  

where �̇�𝓧 = �
𝓧𝓧1 … 𝟎𝟎
⋮ ⋱ ⋮
𝟎𝟎 … 𝓧𝓧𝐶𝐶

�, and 𝓧𝓧𝑖𝑖  is the sparse code generated for class 𝑖𝑖 determined 

by solving the following    
argmin
𝓧𝓧𝑖𝑖,𝐷𝐷𝑖𝑖

 ‖𝑌𝑌𝑖𝑖 − 𝐷𝐷𝑖𝑖𝓧𝓧𝑖𝑖‖22 𝑠𝑠. 𝑡𝑡 ∀𝑘𝑘 = {1 …𝑁𝑁𝑖𝑖}, ‖𝑥𝑥𝑘𝑘‖0 ≤ 𝑡𝑡 (13) 

Then,  �̇�𝓧,𝟎𝟎 ∈ ℝ𝐾𝐾×𝑁𝑁𝑖𝑖  . 𝑰𝑰 ∈ ℝ𝑀𝑀×𝑀𝑀 , is an identity matrix.  𝑄𝑄 =  [𝑄𝑄1,𝑄𝑄2, … . . ,𝑄𝑄𝐶𝐶]  , as 

defined in [36], is the label determining the pair of dictionary atom and signal sharing the 

same class. 𝑄𝑄𝑖𝑖(𝑎𝑎, 𝑏𝑏) = 1 if 𝒅𝒅𝑎𝑎 and 𝒚𝒚𝑏𝑏 are the dictionary atom and training data represents 

Approved for Public Release; Distribution Unlimited.   
10 

 



class 𝑖𝑖. 𝐴𝐴 is a transformation matrix that would regularize the sparse codes of the same 

class to share similar dictionary atoms. 𝐻𝐻 is the matrix containing the class labels i.e., 

𝐻𝐻(𝑖𝑖, 𝑏𝑏) = 1 if 𝒚𝒚𝑏𝑏 is a member of class 𝑖𝑖. Here we assume a linear classifier model; the 

label of an input signal is given as: 

(ℓ(𝒚𝒚𝒗𝒗) = 𝑖𝑖) = argmax
𝑖𝑖

(𝑊𝑊𝑇𝑇𝒙𝒙𝑣𝑣) (14) 

𝑊𝑊 is the classifier determinant parameter, which regularizes the sparse codes from same 

class to share similar dictionary atoms. The details of the method described here can be 

found in [33], [34], [35], [36].  The following is used in conjunction with this method. 

Mutual Information: Mutual information between two random variables provides a 

measure of how much dependent they are on one another. Higher the mutual information 

greater is the dependency. A relevance measure between features and the class they 

belong to can be obtained by maximizing the mutual information [37], [38], [39], [40], 

[42]. For a given feature 𝒙𝒙 the mutual information between the feature and its class 

ℓ(𝒙𝒙) = 𝑖𝑖 is given by (15). 

𝕀𝕀(𝒙𝒙,ℓ(𝒙𝒙) = 𝑖𝑖) = 𝐻𝐻(𝑖𝑖) −𝐻𝐻(𝑖𝑖|𝒙𝒙) (15) 

where 𝐻𝐻(𝑖𝑖) is the entropy given by: 

𝐻𝐻(𝒙𝒙) = 𝑝𝑝(𝒙𝒙) log �
1

𝑝𝑝(𝒙𝒙)� (16) 

3.5 Data sets 

Along this project, we have used several datasets including ETH Zurich building dataset, 

Caltech 101 [43], Caltech 256[44], PASCAL [45]and ImageNet [13] datasets.  We 

include a brief description for each dataset below: 

ETH Zurich buildings dataset: This dataset contains over 1000 building images. The 

images contain mainly Zurich city buildings. The database is created and maintained by 

ETH-Zurich and can be downloaded from the URL: 

http://www.vision.ee.ethz.ch/datasets/index.en.html 
Caltech 101 Dataset: This dataset contains101 object categories with a total of 9,144 

images. The number of images in a class varies from 31 to 800 [43]. The dataset is 

available from URL: 

http://www.vision.caltech.edu/Image_Datasets/Caltech101/ 
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Caltech 256 Dataset:  There are 257 (formed of 256 object categories and one “clutter” 

category) image classes in this dataset. Each class contains at least 81 images. In this data 

set there are 30607 images total. Since the number of available images in each class is 

relatively small (about 100 images per class on average). The dataset is available from 

the following URL:  

http://www.vision.caltech.edu/Image_Datasets/Caltech256/. 

PASCAL Dataset: The Pascal dataset [45] has been widely used as a benchmark 

dataset in many image-based recognition and classification systems. The data set and 

more information is available from the URL:  

http://pascallin.ecs.soton.ac.uk/challenges/VOC/ 

ImageNet Dataset: This is the dataset used for the “ImageNet large scale visual 

recognition challenge” (ILSVR) 2013 [13]. In the data set, some categories are quite 

similar in appearance (such as categories 5, 6, 7 and 8 in Figure 7 and in Figure 8); the 

objects in some images are occluded and some images may include more than one object 

type. The entire dataset contains two overlapping datasets (for two different tasks): The 

detection and classification datasets. More information on ImageNet data set can be 

found from the following URL: http://www.image-net.org/challenges/LSVRC/2013/. 

Classification category: The classification category includes images for training, 

validation and for testing. It also includes the bounding box information for the training 

images. The training set includes 1000 categories and each category includes about 1300 

images. 

Detection category: The detection category (and the folder) includes images for 

training, validation and testing. The bounding box information is also provided in xml 

format for validation and training images.  The xml format for the bounding boxes can be 

read by the development kit that is also included under the detection category.  

3.6 Assumptions 

In this work, we have the following assumptions: 
a) There is an image database available. 
b)  Various feature-types are pre-computed and available for each image in the 

database. 
c) There is a full running version of Matlab.  
d) Third party libraries are already available within the computing environment. 
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4 RESULTS AND DISCUSSION 

In this section, we present the results obtained by our presented approaches, and the 

documentation for the attached software that is used to generate our results. 

4.1 Segmentation and User Interface (sec. 4.1 from contract) 

4.1.1 Develop and implement a VMR approach that applies segmentation and 
classification in order to identify which subsequent object recognition 
algorithms to use  

(sec. 4.1.1. from contract) Automatically identifying objects from a query image based on 

features like shape, color and texture using a set of algorithms first requires the object to 

be isolated from its background clutter so that the contour of the object as well as the 

region (that accounts for the color and texture of the object) within the contour is also 

available. The objective is, given a query image as an input to a segmentation algorithm, 

the output would be the isolated object of interest. The segmentation algorithm forms the 

basis of a prototype system that would demonstrate the ability to dynamically select the 

appropriate image analysis algorithm based on query type and image contents.  A robust 

segmentation algorithm is desired as inclusion of significant amount of background 

clutter increases the probability of detecting false positives thus implying that the overall 

performance depends on the accuracy of segmentation. 

4.1.2 Develop working software including plug-and-play interfaces  

(sec. 4.1.2 from contract) The segmentation algorithms have been developed in Matlab 

environment. Each of the algorithms is implemented as separate functions for ease of use, 

which takes an image as an input and output the coordinates of the contour. A simple yet 

effective guided user interface is developed to choose the type of segmentation and 

display the contour. 

4.1.3 Demonstrate a VMR approach that applies segmentation and classification. 
Document algorithm, software, and results of demonstration  

(sec. 4.1.3-4.1.4 from contract) We developed our software in Matlab environment. The 

various functions and GUI (user interface) are available in the attached disk. 
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List of functions for implementing segmentation algorithms: 

1) VFC_segmentation.m is the main function for executing Active contour based 

segmentation using Vector Field convolution. This algorithm uses manual 

initialization. The user is prompted to initialize the snake by selecting points around 

the object of interest.  

vert = VFC_segmentation(Imagefile) 

Input: Imagefile; provide the full path of the image  

Output: vert; The co-ordinates for the contour is stored sequentially in the variable 

 

2) PIG_segmentation.m is the main function for executing the algorithm Active 

contour using Vector Field convolution and with automatic initialization by Poisson 

inverse gradient. 

[numseg vert]= PIG_Segmentation(Imagefile) 

Input: Imagefile: provide the full path of the image  

Output:Numseg: This variable stores the number of contours obtained 

vert: The co-ordinates for the contours is stored sequentially in the variable 
 

3) TexturePIG_Segmentation.m is the main function for executing the algorithm that 

uses VFC and texture fields to compute the external force field and automatic 

initialization by Poisson inverse gradient. To use this algorithm add PIG_texture to 

Matlab path 

[numseg vert] = TexturePIG_Segmentation(Imagefile) 

Input: Imagefile: provide the full path of the image  

Output:Numseg: This variable stores the number of contours obtained 

        vert: The co-ordinates for the contours is stored sequntially in the variable 

For the above three methods add the Active Model Toolbox (AMT), Version 2.0, toolbox 

to Matlab path. This is also available from http://viva.ee.virginia.edu/ 

Type 'help amt' or 'doc amt' for function list and help. Please keep the folder name AMT 

unchanged.  

4) AOC_Segmentation.m is the main file for demonstrating segmentation using area 

morphologicaloperators. 
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[numseg vert]= AOC_Segmentation(Imagefile) 

Input: Imagefile: provide the full path of the image  

Output:Numseg: This variable stores the number of contours obtained 

vert: The co-ordinates for the contours is stored sequentially in the variable 

 
Segmentation results using the three different algorithms with automated initialization is 

shown in Figure 3. 

   

   
(a) (b) (c) 

Figure 3: Segmentation results using the different segmentation algorithms. (a) Shows results of 
active contour model with image intensity driven external force field and automated initialization by 
Poisson inverse gradient, (b) shows segmentation results for image intensity and texture driven 
external force field with PIG based automated initialization. (c) Shows segmentation results using 
area morphological operators. 

 
User Interface for segmentation 

VMR_segmentation runs the GUI for the automated segmentation algorithms listed 

above. The GUI has options for selecting the algorithm, selecting the image and running 

the segmentation process. The left display panel shows the image selected. The main 

display panel (on right) shows the different segments (the contours of the segments are 

plotted in different colors) of the image. A sample of the GUI screen is shown in Figure 

4. 
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Figure 4: The GUI developed to compare the different automated segmentation algorithms. The GUI 
has the option to select the algorithms and also the image to segment. The left hand panel displays the 
image selected and the right panel displays the image with the segments. 

 
User Interface for testing classification performance using various features: 

To enhance the ease of using and testing all the algorithms implemented to this point, a 

simple yet efficient graphical user interface (GUI) has been developed in Matlab. The 

GUI would provide options for selecting the methods the user wants to test. Also the 

option for selecting the query image, performing segmentation of the query image (if 

required) needs to be provided. The output for segmentation would be the segmented 

object and respective outputs for the different methods used to date.  A screenshot for the 

GUI is shown in Figure 5.  
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Figure 5: Shows a sample screen of the designed user interface. The method to be used can be 
selected from the drop down button. An option to select the query image is present and the query 
image is shown at the bottom left hand corner. On the right the retrieved images are shown in order 
of the best possible match. The ‘previous and next’ buttons are used to scroll through the pages to 
view the next set of retrieved images. 

4.1.4 CBIR as an Ingredient in Recognition (sec. 4.2 from contract) 

Content-based image retrieval (CBIR) has been used as a promising approach in many 

applications including classification, recognition and categorization [41], [43], [3]. CBIR 

techniques focus on the content of an image as opposed to focusing on semantically 

segmented image parts only. In this section, we specifically focus on the use and 

effectiveness of CBIR for recognition.  

A typical CBIR system contains two major steps including the feature computation step 

and the (classifier) training step. The paper [1] includes a detailed survey on recent CBIR 

techniques. The performance of a given CBIR system depends on the selected feature-

type (such as SIFT, HOG or color histogram) to summarize the image content and on the 

selected classifier’s type (such as SVM, a Neural Network, a Bayesian classifier, etc.). 

The final retrieval process is typically performed by applying the trained classifier on the 

new input image to “predict” its category (i.e., the label) from a range of pre-determined 

candidate image categories. 

The content of an image can be represented in different ways including the texture, 

color and shape information. And based on the image category and image content, using 

different types of information to characterize and discriminate different image categories 
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typically provide better results. Therefore in this section, we design and use a CBIR 

system that can compute more than one feature-types characterizing different properties 

of a given image, and then select the most discriminative feature-type for each image 

category. 

4.1.5 Develop and implement software to identify faces via a generalized CBIR 
method 

(sec. 4.2.1 from contract) In the back off meeting with the project director, we were 

suggested to evaluate weapons instead of faces. Therefore, in this section we focus on 

weapon identification via CBIR.  

For weapon classification purpose, we used CalTech-256 data set. CalTech256 dataset 

includes ak47 images under one of its 257 categories. For each image in the data set, first 

corresponding SIFT features are computed. Then, these set of SIFT features are mapped 

into BoW histograms by using a k-means algorithm. As a classifier, in this section, we 

used the support vector machines (SVM) algorithm. For training we selected 30 samples 

from each class and trained the SVM. The training data is formed such that the ak47 

images form (+1) class and the images from the remaining 256 categories form the (-1) 

class. Figure 6 shows the results obtained at different values of the Gaussian kernel 

parameter. The best accuracy is obtained at the minimum kernel value 0.1. Gaussian 

kernel is used.  The highest achieved accuracy was %99.61. In our experiments, we used 

Matlab’s built-in SVM implementation where the optimization technique was selected as 

“sequential minimal optimization (SMO). The error percentage is defined as: 

 

𝑒𝑒𝑒𝑒𝑒𝑒𝐷𝐷𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡𝑎𝑎𝑔𝑔𝑒𝑒 = 100
𝑁𝑁
∑ 𝑎𝑎𝑏𝑏𝑠𝑠(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖′)𝑁𝑁
𝑖𝑖=1                            (17) 

 

where y’ is the predicted label and N is the total number of test samples. The function 

abs(.) is the absolute value. 
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Figure 6: This figure illustrates how the performance of the SVM classifier changes with respect to 
the change in the kernel parameter. Performance drops drastically, as the value of the chosen 
Gaussian kernel parameter increases. 

4.1.6 The value of CBIR as an ingredient in classification  

(sec. 4.2.2 from contract): A typical CBIR technique utilizes a two-step approach in 

which first a set of features computed for an image and then a collection of all the 

computed features is used to represent the entire image in a classifier. A classifier is 

trained with these features for retrieval purposes.  

In this section to determine the value of CBIR as an ingredient in classification, we 

used different feature-types including SIFT, HOG and color histograms to represent the 

image content. Our experiment data is a subset of the ImageNet dataset. The subset 

includes 20 classes and each class includes 200 images.  As classifier, we used both SVM 

and MKL implementations. The results are presented in the next section. 

4.1.7 Documentation and results 

(sec. 4.2.3 from contract): Our software runs on Matlab and uses third party libraries. The 

software is available in the attached CD-ROM.  

A) Documentation: 

A list of feature computing functions and their descriptions are given below: 
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1) computeSIFTFeatures.m : This function computed SIFT features for the set of input 

images. This function takes two parameters: the first one is trainingdata containing the 

entire image data set, and the second one is imagepatchdimension used as an internal 

threshold.  

Example usage: 

SIFTFeatures = computeSIFTFeatures(trainingdata,imagepatchdimension); 

The input data is saved in standard two dimensional Matlab cell format. The first 

dimension of the cell gives the total number of classes and the second dimension gives 

the total number of images in each cell (this code assumes that each class contains the 

same number of images as in the ImageNet data set). This a particular cell such as 

trainingdata{i,j} contains the jth image information from the ith class. Since our main 

image source is from ImageNet dataset, we save both the image and the bounding box 

information in each cell. Thus, the command  trainingdata{i,j}.image gives the actual 

image (as a 2D matrix), the command trainingdata{i,j}.bbox would give the bounding 

box coordinates for the object in that image as a vector. Its format is [xmin, xmax, ymin, 

ymax].  

The second parameter imagepatchdimension is used to checks for a potential error 

given in the bounding box information. If the bounding box information is too narrow 

along either axis, then it will be considered as error and instead of the bounding box 

information, the entire image information is used for that particular corresponding image. 

Imagepatchdimension is the minimum acceptable bounding box thickness along either 

axis.  (In our experiments, it is set to 6). 

It returns all the computed SIFT features for the entire image dataset. The output is also 

in the cell format having the same dimensions as the input data. Since SIFT features 

yields both descriptor information and the features for each descriptor, we saved both 

descriptor information and features separately for each image. For instance, 

SIFTFeatures{i,j}.siftdata.f1 yields SIFT features (in the format as they are computed in 

VLFeat), and SIFTFeatures{i,j}.siftdata.d1 yields SIFT descriptor information in the 

same format as they are computed in VLFeat. 

2) computeRGBFeatures.m: This function computes color histograms for the given set of 

input images. Example usage: 
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RGB_features = computeRGBFeatures(trainingdata,imagepatchdimension, 

binnumberalongeachaxis); 

 It takes a set of input images and their corresponding bounding box informations as 

input (trainingdata) and saves the color histograms in the same cell format (see the 

computeSIFTFeatures.m description for details on the input data format). The second 

threshold (imagepatchdimension) is used to ignore the bounding box information if its 

any dimension is less than the specified pixels along either axis. The third parameter 

binnumberalongeachaxis sets the total number of bins along each color (Red, Green and 

Blue) channels. Therefore, the length of final color histogram is 

binnumberalongeachaxis^3. 

4) computeHOGFeatures.m: This function computes the HOG features for the given set 

of input images and corresponding bounding boxes in trainingdata. Example usage: 

HOG_features = computeHOGFeatures(trainingdata,imagepatchdimension); 

The input images are divided into small square blocks (the block size is given by the 

second input). Similar to previous functions, this function also uses the second input as 

being the threshold for checking the bounding box size and ignores the bounding box 

information if the bounding box size is smaller than this threshold (in pixels) in either 

dimension.   

5) computeSYMFeatures.m: This function computes the symmetry features as described 

in [9] for the given set of input images and corresponding bounding boxes in 

trainingdata. Example usage: 

SYM_features = computeSYMFeatures(trainingdata,imagepatchdimension); 

List of functions computing Bag-of-Words Histograms: 

Below functions compute BoW histograms for SIFT and HOG features. 

1) computeBoWHistogramsForSIFT.m: This function computes the BoW histograms 

from the given set of SIFT features. Example usage: 

[SiftHistograms,Centroids, covariances, priors] =  

computeBoWHistogramsForSIFT(trainingSIFTdata,Binsize,Fisher_KMeans); 

where trainingSIFTdata is the set of SIFT features (in a cell structure) computed by the 

computeSIFTFeatures function, Binsize is the parameter K (as defined in K-means and 

Fisher vectors). Fisher_KMeans is a flag that selects the method to compute the 
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histogram bins. If it is set to 1, K-means algorithm is used to compute the histogram, 

otherwise Fisher vectors are computed as the BoW histograms. 

It returns the computed histograms (SiftHistograms), Bin Centroids (mean values), and 

the covariance and prior values (covariances, priors) for Fisher vector. 

2) computeBoWHistogramsForHOG.m: This function computes the BoW histograms 

from the given set of HOG features. Example usage: 

[HOGHistograms,Centroids, covariances, priors] = 

computeBoWHistogramsForHOG(HOG_features,Binsize,Fisher_KMeans); 

Please run the script CBIR_demo1.m as a demonstration of all these functions. 

B) Results: 

The below experiments (Experiment 1, Experiment 2 and Experiment 3) computes the 

area under the curve (AUC) values for each category as a performance criterion. We 

computed the area under the curve (AUC) values from the precision and recall curves of 

the test data. Precision is defined as TP/(TP+FP) and recall is defined as TP/(TP+FN), 

where TP is the total number of true positives and FN is the total number of false 

negatives. 

Experiment 1: In this experiment, we have used a subset of ImageNet data set. The 

subset includes 20 classes where each class contains 200 images. HOG, SIFT and color 

histograms are computed for each image in the data set. shows sample images from each 

class from the dataset. 

 
Figure 7: Sample images for each category from the dataset used in experiments 1 and 2. 

At this section we studied if using a single feature type (such as HOG) for all image 

categories is sufficient. For that, we trained the classifier (MKL) by using the three 

feature-types (SIFT, HOG, color histograms) for each class.  

 

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 Cat. 9 

Cat. 10 Cat. 11 Cat. 12 Cat. 13 Cat. 14 Cat. 15 Cat. 16 Cat. 17 Cat. 18 Cat. 19 Cat. 20 
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Table 1: Area under the curve (AUC) values computed from precision and recall values for the 20-
200 dataset where K=256. 

Class: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
C: 0.19 0.21 0.16 0.18 0.05 0.11 0.07 0.11 0.12 0.07 0.12 0.04 0.05 0.05 0.07 0.13 0.09 0.05 0.03 0.08 
S: 0.18 0.24 0.21 0.05 0.09 0.30 0.14 0.11 0.14 0.26 0.11 0.08 0.05 0.07 0.08 0.13 0.05 0.15 0.04 0.14 
H: 0.22 0.15 0.66 0.25 0.08 0.17 0.18 0.08 0.12 0.37 0.16 0.10 0.12 0.15 0.27 0.44 0.43 0.13 0.06 0.35 

C+S: 0.17 0.26 0.15 0.19 0.05 0.13 0.16 0.15 0.22 0.13 0.11 0.07 0.05 0.05 0.09 0.21 0.07 0.16 0.04 0.14 
S+H: 0.21 0.19 0.62 0.24 0.08 0.34 0.23 0.10 0.13 0.36 0.15 0.09 0.12 0.14 0.26 0.43 0.42 0.12 0.06 0.38 
C+H: 0.29 0.25 0.68 0.26 0.07 0.12 0.21 0.13 0.18 0.38 0.19 0.06 0.11 0.18 0.27 0.47 0.43 0.13 0.07 0.34 

C+S+H: 0.27 0.27 0.66 0.30 0.07 0.14 0.22 0.15 0.28 0.35 0.17 0.08 0.11 0.18 0.26 0.46 0.42 0.12 0.06 0.37 
 

Table 1 is computed by training the MKL classifier with 190 samples.  The first 95 

samples are from the (+1) category and the remaining 95 samples are formed by taking 5 

samples from each other class (5x19=95). All the remaining images are used for the 

testing case (3530 images). The images with no features are ignored in the data set (total 

of 14 images). For this test, the K value (for K-means algorithm) is set to 256 for both 

SIFT and HOG BoW histograms.  

The highest value among all the feature combinations is highlighted for each class in 

the table. As it can be seen, the most of the strongest values are obtained by combining 

different feature types. 
Table 2: CBIR results over 20 classes are presented. The CBIR system is tested for various 
combinations of SIFT (S), HOG (H) and color histograms (C). The average area under the curve 
values (AUC) are listed under each feature combination 

        Features: C S H S+C S+H H+C All-3 

Average AUC: 0.10 0.13 0.22 0.13 0.23 0.24 0.25 

 

Experiment 2: This experiment is conducted to study the effect of the K value on the 

classification performance. We have used the same dataset and the approach used in 

Experiment 1. Therefore, in this experiment we only changed the K value to 1000 in K-

means algorithm and created the BoW histograms accordingly.  

As classifier, MKL algorithm is being used with the same settings as in Experiment 1. 

MKL is trained for each class separately using one vs. all approach (95 samples for 

positive class, and 95 samples for the negative class are used for training). Table 3 lists 

AUC values computed from the precision and recall figures.   
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Table 3: Area under the curve (AUC) values computed from precision and recall values for the 20-
200 dataset where K=1000. 

Class: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
C: 0.19 0.21 0.16 0.18 0.05 0.11 0.07 0.11 0.12 0.07 0.12 0.04 0.05 0.05 0.07 0.13 0.09 0.05 0.03 0.08 
S: 0.15 0.26 0.08 0.03 0.07 0.27 0.14 0.10 0.15 0.26 0.08 0.05 0.05 0.05 0.07 0.14 0.03 0.19 0.04 0.15 
H: 0.21 0.15 0.67 0.19 0.08 0.15 0.23 0.08 0.19 0.32 0.19 0.08 0.11 0.13 0.27 0.37 0.40 0.12 0.06 0.34 

C+S: 0.16 0.28 0.15 0.19 0.05 0.12 0.12 0.14 0.14 0.12 0.10 0.07 0.05 0.05 0.08 0.21 0.08 0.19 0.04 0.18 
S+H: 0.21 0.24 0.63 0.17 0.08 0.33 0.23 0.09 0.16 0.30 0.16 0.08 0.10 0.12 0.26 0.34 0.40 0.16 0.06 0.34 
C+H: 0.27 0.23 0.69 0.23 0.08 0.13 0.24 0.15 0.26 0.32 0.16 0.06 0.10 0.12 0.27 0.40 0.40 0.12 0.06 0.35 

C+S+H: 0.26 0.31 0.65 0.30 0.07 0.13 0.24 0.15 0.25 0.30 0.15 0.07 0.10 0.13 0.25 0.38 0.40 0.16 0.06 0.36 
 

Table 4 shows the average value (over 20 classes shown in Table 3) for each feature 

combination. 
Table 4: CBIR results over 20 classes are presented. The CBIR system is tested for various 
combinations of SIFT (S), HOG (H) and color histograms (C). The average area under the curve 
values (AUC) are listed under each feature combination. 

        Features: C S H S+C S+H H+C All-3 

Average AUC: 0.10 0.12 0.22 0.13 0.22 0.23 0.24 

 

Experiment 3: In addition to Experiment 1 and Experiment 2, we have also created 

another data set containing 30 classes (i.e., image categories) where each class contains 

300 images. This experiment is designed to see if the results are consistent as the number 

of images increase in the dataset. Similar to Experiment 1 and 2, in this experiment, one 

vs. all approach is used for each class and MKL algorithm is used with the same 

parameters.  

 
Figure 8: Sample images from each category are shown from the used data set [13]. Each image is 
down-sampled and resized to fit into the figure. 

BoW histograms are created by using K-Means algorithm where K is set to  

1000. The average AUC values for that data set are given in the below table. Figure 8 

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 Cat. 9 Cat. 10 

Cat. 11 Cat.12 Cat. 13 Cat. 14 Cat. 15 Cat.16 Cat.17 Cat. 18 Cat. 19 Cat. 20 

Cat. 21 Cat. 22 Cat. 23 Cat. 24 Cat. 25 Cat. 26 Cat. 27 Cat. 28 Cat. 29 Cat. 30 
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shows the AUC values in three different figures. Each graph in the figure compares the 

results of different feature-type combinations. Fig. 8a compares the AUC values for 

Color, SIFT, Color & SIFT, Color & SIFT & HOG combinations. Fig. 8b compares the 

AUC values for HOG, Color, HOG & Color, Color & SIFT & HOG combinations. Fig. 

8c compares the AUC values for HOG, SIFT, HOG & SIFT, Color & SIFT & HOG 

combinations. Table 5 shows the average AUC values computed over 30 classes for each 

feature-type combination. 
Table 5: CBIR results over 30 classes are presented. The CBIR system is tested for various 
combinations of SIFT (S), HOG (H) and color histograms (C). The average area under the curve 
values (AUC) are listed under each feature combination. 

        Features: C S H S+C S+H H+C All-3 

Average AUC: 0.07 0.08 0.16 0.10 0.17 0.19 0.20 

 

 

(a) (b) 

(c) 

Figure 9: Comparisons of the area under the 
precision-recall curves for each object category are 
shown vertically: On each plot, combinations of a 
pair of feature-types are shown and those results 
are compared to the case where all three feature-
types are used. (a) AUC values for each class are 
given for the Color, SIFT, Color&SIFT, 
Color&SIFT&HOG features. (b) AUC values for 
each class are given for the HOG, Color, 
Color&HOG, Color&SIFT&HOG features. (c) 
AUC values for each class are given for the HOG, 
SIFT, HOG&SIFT, Color&SIFT&HOG features. 
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A conclusive discussion for Experiment 1, 2 and 3: 

A comparison of Table 2 and Table 4 shows that increasing K value from 256 to 1000 

shows a slight performance reduction on average. The results in Table 5 shows lower 

than the ones shown in Table 4 This is mainly due to the uneven number of used data (for 

example 29x300= 8700 images for the negative class vs. 1x300=300 images for the 

positive class). However, both tables (Table 4 and Table 5) consistently show that, 

combining different feature-types increases the performance and accuracy in 

classification. 

While HOG was the dominant single feature-type providing the highest AUC value 

among all three feature-types on average, Table 1, Table 3 and Figure 8 show that there is 

no single feature-type that can show the best classification performance for “all the 

classes” and that the combination of different-feature types can provide significant 

improvement in classification. 

Table 1, 2, 3 and Table 4 show that the content of an image carries important 

information for the classifier. The feature-type used to represent that image content can 

make significant difference on the performance of a classifier. Thus, it remains important 

to select the best feature-type or the set of the best feature-types for each category 

separately. 

4.2 Automatic Building Recognition (sec. 4.3 from contract) 

Here, we implement a building recognition algorithm that is based on the algorithm 

presented in [46]. 

4.2.1 Techniques for building recognition  

(sec. 4.3.1 from contract): Our building recognition approach includes following steps: 

1. Detect all of the lines in the image using Canny edge detection and Hough transform. 

2. Look at the entropy of the line orientations, and remove lines in regions of the image 

that have high entropy (this is to deal with random lines detected in trees, bushes, etc.) 

3. Of the low-entropy lines, count the number of lines that run parallel to each other: 

getParallelLines() 
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4. Of the low-entropy lines, determine the lines that co-terminate (meaning two lines 

that come to an end, such as the frame in a window or roof or masonry on a building, 

stairs, etc.): getCoterminations() 

5. Of the co-terminating lines, count the lines that form a U (3 lines co-terminate at 

roughly 90 degrees) or an L (2 lines co-terminate at roughly 90 degrees): getUjunctions() 

getLJunctions() 

6. Normalize the num parallel lines, num U junctions, and num L junctions, by the total 

number of low entropy lines to form the descriptor array of 3 floats: 

extractLineDescriptor() 

7. Train SVM (30/70 train/test) using only the building descriptors and all of the 

categories of images that we had in the VMR image set: buildClassifiers() 

8. Generate a confusion matrix for all of the classes: buildClassifiers() 

4.2.2 Documentation, Results and Assessment of the presented techniques on 
building recognition 

(Sec. 4.3.2. – 4.3.3 from contract): This algorithm is implemented in C/C++. The 
corresponding files are cbir.c and cbir.h. Below is a list of the methods included in these 
files: 

getParallelLines(): this method computes the parallel lines in the code. 

getCoterminations(): this is the method that returns the lines that co-terminate. 

getUjunctions(): This method computes the U junctions and returns the information for 

them. 

getLJunctions(): This method computes L junctions and return them. 

extractLineDescriptor(): This method computes the line descriptors and return them. 

buildClassifiers(): This method builds an SVM classifier and trains the classifier by 

using 30 building descriptors. It also generates a confusion matrix.  

Figure 10 shows both the original images and the detected L and U junctions.  
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Original Building Hough transform with Canny edge detection 

Figure 10: A building image and the detected L and U junctions are shown in the image. The right 
most image shows a zoomed in portion of a building displaying the L-U junctions. 

4.3 CBIR as a “backstop” algorithm for recognition (sec. 4.4 from contract) 

The current state-of-the-art recognition techniques focus on using template matching 

based models such as deformable parts models, (DPM [47]). Thus, these techniques 

analyze certain parts of images individually yielding the capability of drawing a bounding 

box around the detected objects. On the other hand, CBIR techniques typically analyze an 

image based on the entire image content. Therefore, CBIR techniques can be used as a 

backstop, when the “template matching” based techniques cannot make a decision with 

confidence. This approach is illustrated in Figure 11. 

In this section, we assume that for a given test image, the template-match based 

algorithms did not yield a result with a reliable confidence already. In such a scenario, we 

propose using a CBIR approach in which various image features are computed and used 

as input for a classifier. The classifier recognizes the image category accordingly. Please 

refer to Section 4.2 for the details of the used CBIR system. 
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Figure 11: Use case scenario for CBIR as a backstop algorithm for recognition. 

Please refer to section 2.5.2 for the quantitative analysis of our proposed system. 

4.4 Viability of Self-nomination (sec. 4.5 from contract) 

Self-nomination nominates (assigns weights) individual algorithms (such as SIFT, HOG 

and color histograms) for a given category. The proposed self-nomination approach and 

the use-case scenario are given in Figure 12. 

In our first proposed approach, each algorithm has its own weight and the importance 

of the algorithm is reflected in the value of the weight such that the values of weights 

change between zero and one signifying the importance of the algorithm. The weights are 

computed through a multiple kernel learning framework. 

 
Figure 12: Self-nomination in VMR. 
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The second approach uses a dictionary learning technique to develop a class 

discriminative dictionary for the training dataset. This discriminative dictionary is then 

used to determine the class label for the test images. The self-nomination of the 

algorithms for a given test image is based on maximizing mutual information.  

4.4.1 Investigate and develop methodology for a “self-nomination” paradigm in 
which a large pool of algorithms self-score their suitability and implement in 
software. 

(sec. 4.5.1 from contract): In this section we discuss the self-nomination paradigm and 

two different approaches to address the problem. 

A. In this section we propose a similarity-based approach for self-nomination. In our 

proposed approach, we compute the kernel matrices as given in Eq. (9) for each 

algorithm from a pool of the algorithms and then, weight each kernel matrix such that its 

weight will reflect its suitability. The problem, then, becomes finding an automated 

approach that will automatically compute the kernel weights based on their suitability. 

A kernel function K(.) fundamentally is a measure of the similarity in a reproducing 

kernel Hilbert space [27], [49]. Therefore in this paper, we will define the similarity with 

K(.). For the rest of the paper, we will use the notation 
     

to represent the BoW histogram 

of the ith image from the mth object category where m = 1,2.3,…,L (where L is the total 

number of object categories). Furthermore, we will assume that each category included 

the same number (A) of images and Kg(.) represents the similarity (i.e., the kernel) for the 

gth feature-type where g = 1,2,3,…N (where N is the total number of feature-types). Then, 

ideally, for a given BoW histogram xi we would expect that the similarity between  xi and 

any other image’s histogram from its category should be greater than its similarity to any 

image from any other category for g∀ such that: 
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where m+1 represents any other object category (i,j=1,2,…,A). Then, for all the images in 

the category m, we would expect: 
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However, for some feature-type d we obtain:  

m
ix
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Assigning a different weight to each feature-type would yield the following inequality: 
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where wg is zero if Eq. (19) holds. Notice that Eq. (20) is shown only for one class (the 

class m). In this work, our goal is finding an approach to learn the coefficients wg. For 

that purpose a binary classifier (with a “one vs. all” approach) fits our methodology since 

such a classifier can learn weights based on their discriminative power for each object 

category where the object category represents the (+1) class and all other categories 

would represent the (-1) class collectively. We choose the MKL framework to find the 

coefficients wg where w = β and where each gram matrix [27] is formed of all the BoW 

histograms for the feature-type g such that:  

),( ji
gg

ij K xxK =                                                    (22) 

and Ki,j  in (11) is modelled such that: 

∑
=
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1
KK β                                                      (23) 

In (22), each feature-type forms a Gram matrix and its weight signifies the saliency of 

that feature-type for the detection of the (+1) class. Our implementation uses SimpleMKL 

[32] as a solver. 

 

B. In this approach we propose an information theoretic approach to dynamically choose 

the feature descriptor based on a given query type and the image contents. As mentioned 

earlier a relevance measure between features and the class they belong can be obtained by 

maximizing the mutual information. Hence we approach the problem from information 

theoretic viewpoint, that a particular feature is more accurate for classifying an image 

when the mutual information between the feature and the class is maximized [36]. 
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Figure 13: Detailed use case scenario for mutual information based feature nomination method. 

We define a feature descriptor type 𝐹𝐹𝑙𝑙 where 𝑙𝑙 = 1 … … . 𝐿𝐿 and 𝐿𝐿 denotes the number of 

feature types being used for classification. For our experiments we use four features 𝐹𝐹1: 

scale invariant feature transform (SIFT), 𝐹𝐹2: histogram of oriented gradients (HOG), 

𝐹𝐹3: local binary pattern (LBP), and 𝐹𝐹4: HSV color histograms. We use our feature 

nomination algorithm to choose between these four features to provide the ultimate 

classification result. A detailed use case scenario of our method is shown in a block 

diagram in Figure 13. 

The feature vector   𝑌𝑌𝑙𝑙 = �𝑌𝑌1𝑙𝑙 ,𝑌𝑌2𝑙𝑙 , … . . ,𝑌𝑌𝐶𝐶𝑙𝑙�  corresponds to feature type 𝑙𝑙,  for 

classes 1 … .𝐶𝐶. The respective sparse codes are 𝐷𝐷𝑙𝑙 = [𝐷𝐷1𝑙𝑙 ,𝐷𝐷2𝑙𝑙 , … . . ,𝐷𝐷𝐶𝐶𝑙𝑙 ]. The sparse codes 

for a particular feature descriptor 𝑙𝑙 is obtained by solving  

argmin
𝑋𝑋𝑙𝑙,𝐷𝐷𝑙𝑙,𝐴𝐴𝑙𝑙,𝑊𝑊𝑙𝑙

 𝒞𝒞(𝐷𝐷𝑙𝑙 ,𝐷𝐷𝑙𝑙,𝐴𝐴𝑙𝑙,𝑊𝑊𝑙𝑙)  

 𝒞𝒞(𝐷𝐷𝑙𝑙 ,𝐷𝐷𝑙𝑙 ,𝐴𝐴𝑙𝑙 ,𝑊𝑊𝑙𝑙) = ‖𝑌𝑌𝑙𝑙 − 𝐷𝐷𝑙𝑙𝐷𝐷𝑙𝑙‖22 + 𝛾𝛾�𝓧𝓧𝑙𝑙̇ − 𝑰𝑰𝐷𝐷𝑙𝑙�
2

2
+ 𝛼𝛼‖𝑄𝑄 − 𝐴𝐴𝑙𝑙𝐷𝐷𝑙𝑙‖22

+  𝛽𝛽‖𝐻𝐻 −𝑊𝑊𝑙𝑙𝐷𝐷𝑙𝑙‖22 
   (24) 

As the number of features in the training set remains the same irrespective of the 

feature descriptor type, 𝑄𝑄,𝐻𝐻 , which correlate between the features and their classes, 
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remain same. For a given query image 𝑞𝑞, the feature descriptor 𝑦𝑦𝑞𝑞𝑙𝑙  for feature type 𝑙𝑙 is 

computed and the respective sparse code 𝒙𝒙𝑞𝑞𝑙𝑙  is obtained by solving, 

argmin
𝒙𝒙𝑞𝑞𝑙𝑙

�𝒚𝒚𝑞𝑞𝑙𝑙 − 𝐷𝐷𝑙𝑙𝒙𝒙𝑞𝑞𝑙𝑙 �2
2

 s. t  �𝒙𝒙𝑞𝑞𝑙𝑙 �0 ≤ 𝑡𝑡   (25) 

The feature specific class label for the test image is given by 

(ℓ�𝑥𝑥𝑞𝑞𝑙𝑙 � = 𝑖𝑖) = max
𝑖𝑖

((𝑊𝑊𝑙𝑙)𝑇𝑇𝒙𝒙𝑞𝑞𝑙𝑙 )   (26) 

The class labels obtained from (26) may or may not be similar for all the feature types. 

So it is necessary to determine the most relevant class for the query image. Once the 

feature specific class labels are obtained, the next step is to determine which feature type 

is more relevant for classification and determine the class as determined by the 

nominated feature.  

We keep the number of training features per class constant, which implies that the 

entropy of a class is also constant. Thus maximizing the mutual information between a 

feature and a class would mean minimizing the conditional entropy 𝐻𝐻(𝑖𝑖|𝒙𝒙). The class 

conditional entropy can either be computed from the original feature or the sparse codes 

obtained by solving (25). To account for the any loss of information that may have 

incurred due to sparse coding of  𝑥𝑥𝑞𝑞𝑙𝑙 , we compare 𝐻𝐻�ℓ�𝑥𝑥𝑞𝑞𝑙𝑙 ��𝑦𝑦𝑞𝑞𝑙𝑙�𝐻𝐻�ℓ�𝑥𝑥𝑞𝑞𝑙𝑙 ��𝑥𝑥𝑞𝑞𝑙𝑙 � for all  𝑙𝑙 . 

Thus the final classification result is given by the nominated feature type:  

ℓ(𝑞𝑞) =   min
𝑙𝑙
𝐻𝐻�ℓ�𝑥𝑥𝑞𝑞𝑙𝑙 ��𝑦𝑦𝑞𝑞𝑙𝑙�𝐻𝐻�ℓ�𝑥𝑥𝑞𝑞𝑙𝑙 ��𝑥𝑥𝑞𝑞𝑙𝑙 �       (27) 

4.4.2 Assessment of the developed methodologies 

(sec. 4.5.2 from contract) The assessment for the two above mentioned methods are 

described here. 

A. We have conducted two experiments in conjunction with experiments 1 and 3. The 

following experiments show the automatically computed weights for each algorithm 

(self-nomination) for different feature-type configurations. 

Experiment 4: For our experiments, we choose 30 image categories (see Figure 8 for 

sample images) from the ImageNet data set [13]. For each category, we randomly select 

250 images to form our experimental data set. The BoW histograms are only computed 

within the bounded boxes for each image. The bin centers of histograms are obtained by 

k-means algorithm (k=1000). For training, we employed a “one vs. all” scheme for each 
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object category. From each target category, we select 145 images for the training and 5 

images from all the other 29 categories yielding a 145 vs. 145 training set. This scheme is 

selected to avoid any bias in the learning towards the dominating class in the training 

data. All the remaining images from each category are used for testing. We trained the 

MKL algorithm individually for different combinations of the three types of features by 

using the Gaussian kernel. We used 10 Gaussian kernel parameters {0.00002, 0.0002, 

0.04, 1, 4, 6, 7, 9, 10 12} yielding 10xN kernels within the MKL model. First we trained 

MKL by using the color histograms, the SIFT BoW histograms and the HOG BoW 

histograms individually. Then we used pairs of these features for the training. Finally, we 

used all three feature-types for training. Each trained MKL is applied on the test data.  

The AUC values for each class were shown in Figure 8 for different combinations of 

the feature-types. Table 6 shows that, on average, there is a gain in combining feature-

types as opposed to using them individually. The gain is maximal (%4) when the highest 

average single feature-type AUC value is compared to the one of all three feature-types. 

However, this is not necessarily true for each case (for example, see category 6 in Figure 

9c). A comparison of all three plots in Figure 9 shows that the HOG (H) features 

contribute to the AUC values the most on average.  

The weights for each feature-type are summed over the 10 kernel parameters and the 

results are shown in Table 2 for the case where N=3. These are the values signifying the 

saliency of each feature type. Among all three, the HOG features are weighted the most 

over the 30 categories (see the average values in Table 2). 
Table 6: Kernel weights (βm, m=1,2,3) are shown for each category when the MKL is trained by 
using all three feature-types. 

Category: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

S: 0.00 0.00 0.00 0.00 0.25 0.02 0.03 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.04 

H: 0.75 0.70 0.84 0.00 0.44 0.06 0.91 0.36 0.65 1.00 0.41 0.60 0.47 0.38 0.96 

C: 0.25 0.30 0.16 1.00 0.31 0.92 0.06 0.35 0.35 0.00 0.59 0.40 0.53 0.62 0.00 

                 
Category: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Ave. 

S: 0.00 0.00 0.28 0.07 0.00 0.00 0.04 0.09 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.06 

H: 0.87 1.00 0.72 0.88 1.00 0.66 0.95 0.15 0.91 0.71 0.56 0.20 0.94 0.18 0.38 0.62 

C: 0.13 0.00 0.00 0.05 0.00 0.34 0.02 0.76 0.09 0.29 0.44 0.00 0.06 0.82 0.62 0.31 
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Experiment 5: This experiment is conducted by using the same dataset and the same 

configuration of Experiment 1. In this experiment, we studied how the kernel weights are 

assigned as the number of feature-types changes. For that, we first trained the algorithm 

by using pairs of feature-types including Color&SIFT, Color&HOG and SIFT&HOG. 

Then we also trained the algorithm by using all three feature-types. The weights are given 

below (the highest values are highlighted). 
Table 7: The classifier is trained by using Color (RGB) histograms and SIFT features. 

Class: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Color: 0.9 0.8 1 1 0.7 0.9 0.3 0.8 0.8 0.7 0.9 0.5 0.8 0.8 0.2 0.7 0.9 0.1 0.3 0 
SIFT: 0.1 0.2 0 0 0.3 0.1 0.7 0.2 0.2 0.3 0.1 0.5 0.2 0.2 0.8 0.3 0.1 0.9 0.7 1 
 
Table 8: The classifier is trained by using Color (RGB) histograms and HOG features. 

Class: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Color: 0.4 0.5 0.0 0.7 0.5 0.9 0.2 0.7 0.5 0.0 0.7 0.3 0.5 0.2 0.0 0.1 0.0 0.0 0.0 0.0 
HOG: 0.6 0.5 1.0 0.3 0.5 0.1 0.8 0.3 0.5 1.0 0.3 0.7 0.5 0.8 1.0 0.9 1.0 1.0 1.0 1.0 
 
Table 9: The classifier is trained by using SIFT and HOG features. 

Class: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
SIFT: 0.2 0.2 0.0 0.0 0.2 0.7 0.5 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 
HOG: 0.8 0.8 1.0 1.0 0.8 0.3 0.5 0.5 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 
 
Table 10: The classifier is trained by using all three feature-types. 

Class: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
SIFT: 0.1 0.1 0.0 0.0 0.2 0.1 0.4 0.1 0.1 0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 
HOG: 0.6 0.4 0.9 0.3 0.4 0.1 0.4 0.2 0.3 0.8 0.3 0.5 0.5 0.8 1.0 0.9 1.0 1.0 1.0 0.8 
Color: 0.3 0.6 0.1 0.7 0.4 0.9 0.2 0.7 0.5 0.0 0.7 0.3 0.5 0.2 0.0 0.1 0.0 0.0 0.0 0.0 
 

The self-nominated weights for all feature-types are presented in Table 7, 8, 9 and in 

Table 10 for each class. Table 7 lists the weights the feature-types between Color 

histograms and SIFT features for each class (over 20 classes). As the highlighted values 

indicate, color histograms we selected as the most discriminative feature-type for 15 

classes when compared to the SIFT features. SIFT was weighted as more discriminative 

for only the remaining 5 classes. 

Table 8 compares color histograms to HOG features. In Table 8, the algorithm 

selected HOG features to be the most discriminative feature-type for 12 classes when 

Approved for Public Release; Distribution Unlimited.   
35 

 



HOG features are compared to the color histograms. Color histograms were more 

discriminative for only 4 classes, when they are compared to HOG features. For the 

remaining 4 classes, the algorithm equally weighted both color histograms and HOG 

features. 

Table 9 compares SIFT features to HOG features. In this comparison, HOG features 

were selected for 17 classes, while SIFT was selected only for one class. For the 

remaining two classes, both SIFT and HOG features were equally weighted. 

Table 10 compares all three feature-types. In this case, SIFT features were selected 

for only one class, HOG features were selected for 12 classes and color histograms were 

selected  for 5 classes as being the most discriminative feature-type. For the class 13, 

both HOG and color histograms were equally selected (weighted). 

Comparing these results to the individual AUC values given in Table 1, we can 

conclude that, indeed the self-nomination algorithm can weight the most discriminative 

feature-types on average. 

 

B. We performed experiments on Caltech 101 dataset to assess the performance of the 

mutual information based feature-nomination method. The results have been published 

[36] in an IEEE conference on image processing.  

       

       
Figure 14: Sample images from Caltech 101 dataset 

Figure 14 shows some sample images from Caltech 101 dataset. 
 
Experiment 6: Experiments were performed using the Caltech101 dataset, which 

contains 101 different categories with 9,144 images. The number of images in a class 

varies from 31 to 800. We choose randomly selected 28 images per class to train the 
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classifier for each of SIFT, HOG, LBP and HSV color histograms. The sparse codes, the 

training dictionary and the classifier parameter were obtained using these four features.  

Figure 15: The figure shows the confusion matrix (the diagonal entries show the classification 
accuracy when a test image from the classes along the row is classified correctly) for 16 sample 
classes which have classification accuracy over 80% using the feature the feature nomination scheme. 

 

In Figure 15, we show accuracy percentage (number of correct class predictions/number 

of test images in that class) using feature descriptor voting scheme for 16 sample classes 

which have accuracy more that 80%. About 10% of the classes for the dataset have 100% 

accuracy and 12.7% classes have more than 90% accuracy. In this figure, the rows 

correspond to the category from which the test image belongs and each column 

corresponds to the training categories. There are total 101 categories in the dataset and 

we are comparing 16 of these classes, other classes remain hidden. The diagonal values in 

Figure 15 correspond to the accuracies to being correctly classified. The off-diagonal 

values correspond to the false positives i.e., a test image belongs to one class, but is mis-

classified as another class. 
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Figure 16: Figure shows the classification accuracies using SIFT (S), HOG (H), LBP (L), HSV color 
histogram (C) and mutual information based self-nomination (SN) algorithm. We also show 
comparison when a weighted combination of the features used is taken using the same dictionary 
learning based classifier. 

Figure 16 shows the comparison of self-nomination algorithm where it chooses the 

appropriate feature for classification with the features when used as a single descriptor. 

For all the experiment we use the dictionary learning based classifier. A comparison is 

also shown when a weighted average of the features is computed for classification 

purpose. Here the weights are selected manually.   
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5 CONCLUSIONS 

In this work, we presented two proto-type approaches for our above-mentioned self-

nomination approach. We studied various feature types and compared their results in 

various experiments in the results section.  Our attached code shows various  

5.1 A Conclusive discussion and conclusion on Experiments 4 and 5 

While MKL is successful in weighting the salient feature-types on average, for the 

categories 2 and 6, it failed on choosing the salient feature-types. For category 2, MKL 

weighted the HOG and color features as being the most salient feature-types. However, 

SIFT features yielded the highest AUC values for category 2 (See Figure 9a or Figure 

9c). Similarly for the 6th category, MKL weighted the color histograms being the most 

salient type. However, color histograms based feature-type provides the least 

performance by itself in general (see Figure 9). We changed the order of the used 

features-types in (23) for these cases to see if ordering matters and observed that 

changing the order did not change the results.  

A comparison of the Table 2 and Figure 9states that, although the MKL algorithm 

failed to assign a stronger weight to the most salient feature-type correctly for categories 

2 and 6, in all other cases it found the salient features yielding the highest (or near 

highest) AUC values.  

In our preliminary experiments we also noticed that using unequal numbers of samples 

from each class, yields biasing towards the class that includes the most samples. 

Avoiding such bias is possible by selecting equal number of samples from each class and 

we included the software (code) performing that task during the generation of the training 

data. 

5.2 A Conclusive discussion and conclusion on Experiment 6 

As can be seen from the Figure 16, while the proposed dictionary learning based 

algorithm may not give the maximum accuracy in some categories, for other categories, it 

either chooses the feature that gives the maximum accuracy or chooses different features 

to provide higher accuracy. For test images belonging to the same class, the self-
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nomination algorithm may not choose the same feature type, but nominates the feature, 

which is most suitable for that image based on its contents. 
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APPENDIX 

In this appendix, we cover the rest of the contract items that are not addressed in the main 

text. 

A.1 Documentation 

(sec. 4.5.6 from contract): The documentation and details of the implementation of the 

two methods stated above are given here 

A. In our implementation of multiple kernel learning based self-nomination, we include 

third party (off-the-shelf) libraries such as VLFeat [48] and SimpleMKL [32]. Most of 

the algorithms presented in this report are implemented on the Matlab platform.  

FeatureNominationwithMKL: This Matlab function splits the input data into training 

and testing, it trains the classifier and returns the classification results and self-nominated 

weights. It computes accuracy for both positive (+1) and negative (-1) classes separately 

from the test data. It forms the training data from the inputdata AllData based on the 

second and third parameters outclasssamplenumber and currentClass. The data is split 

into positive and negative samples based on the CurrentClass value. Then from each 

negative class, a total of outclasssamplenumber samples are taken. The algorithm trains 

the classifier by taking equal number of training samples from both positive and negative 

classes. FeatureSet is the total number of feature-types included in AllData. 

[ positive_classpercentage, negative_classpercentage, beta ,ypred, ytest 

]=FeatureNominationwithMKL(AllData, outclasssamplenumber,currentClass,FeatureSet) 

The returned values are positive_classpercentage, negative_classpercentage, beta, 

ypred, ytest. Among those, beta values are the self-nomination weights (between 0 and 1) 

signifying the relevant importance of each feature-type, ypred is the f(x) value estimated 

by using Eq. (5) and ytest is the true labels for the testing data;  positive_classpercentage 

is the accuracy value for the positive samples in the test data (given as a percentage); 

negative_classpercentage is the accuracy value for the negative samples in the test data 

(given as percentage). 

B. We implemented our algorithm in Matlab platform. Our implementation includes third 

party libraries like VLFeat [48] for feature computation, spatial pyramid calculation [26] 

Approved for Public Release; Distribution Unlimited.   
45 

 



and K-SVD algorithm for dictionary learning [35]. These algorithms are easily available 

from the respective websites. 

Functions for feature nomination by maximizing mutual information: 

1) trainDictionary: This Matlab function computes the different features, computes 

spatial pyramid features, learns the discriminative dictionary for each of the feature types 

and computes the respective sparse codes.  

[trainspatialpyramidFeature, trainDictionary, trainSparsecodes, classifierParam] = 

trainDictionary(traindata, classInfo, codeInfo) 

Input: traindata, input the training class filenames as a matfile 

 classInfo, input the parameter H as in (24) 

 codeInfo, parameter Q in equation (24) 

Output: spatialpyramidFeature, contains the spatial pyramid feature of the training data. 

 trainDictionary, the learned dictionary for the training data. 

 trainSparsecode, the sparse codes  for the training data 

 classifierParam, the classifier parameter W for all the features  

An option to add more feature types is also available with the code. 

2) testMetaAlgorithm: This algorithm computes the testing part where the input is one 

or a stream of test images and the output is the corresponding class for the self-

nomination algorithm. Computing the features for the test data, computing the sparse 

code for the test data, evaluation of the conditional entropy for each of the features are 

incorporated within he following function 

[classlabel] = testMetaAlgorithm(testdata, trainspatialpyramidFeature, trainDictionary, 

trainSparsecodes, classifierParam) 

Input: testdata, contain the test image file names in a matfile 

trainspatialpyramidFeature, the features computed from the training data  

trainDictionary, the dictionary computed from the training data  

trainSparsecodes, the sparse code computed from the training data  

classifierParam, the classifier parameter W output from the trainDictionary.m 

Output: classlabel, the final class label of the test data 

Approved for Public Release; Distribution Unlimited.   
46 

 



In addition to the above-mentioned functions other functions are provided to assess the 

accuracy of the algorithm, to compute the classInfo, codeInfo. Details on each of these 

functions are available with the code.  

A.2 Integrated System (sec. 4.6 from contract) 

We have developed an integrated system that first reads all the images from a data sets, 

computes different feature types, computes bag of words histograms and then selects the 

most appropriate feature-type (algorithm) for a given category. At the same time, the 

system also makes a decision via the built-in SVM classifier. Our integrated system 

works on Matlab environment.  

A.2.1 Assembled software system 

(sec. 4.6.1 from contract): An assembled software system has been developed on Matlab 

platform and it is available on our website:  

http://viva-lab.ece.virginia.edu/viva/doc/research_vmrdarpa.html . 

A.2.2 Assess the integrated software system 

(sec. 4.6.2 from contract): Our integrated system uses the individual functions used in the 

above-mentioned sections. Therefore it yields the same results as the results presented in 

sections 2.2 and 2.5. Please refer to those sections for the integrated system’s 

performance. 

A.2.3 Documentation 

(sec. 4.6.3 from contract): Integrated system uses the same functions as the sections 2.5 

and 2.2. Therefore, please refer to those sections for the documentation. 

A.3 Reports (sec. 4.7 from contract) 

A.3.1 Progress towards accomplishment 

(sec. 4.7.1 from contract): We have reported the progress toward the accomplishment of 

the contract at VMR meetings. In particular we have attended the quarterly PI meetings 

and submitted interim reports. 
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A.3.2 Continually determine the status of funding 

(sec. 4.7.2 from contract): We have provided the monthly invoicing. 

A.3.3 Conduct presentations at such times and places designated in the contract 
schedule. 

(sec. 4.7.3 from contract): We have regularly attended VMR meetings and presented the 

summary and accomplishments for the contract. 

A.3.4 Document all technical work accomplished and information gained. 

(sec. 4.7.4 from contract): In this work, we have presented and developed various 

algorithms and implementations. These include segmentation algorithms, an analysis to 

determine the value of various CBIR techniques, and an algorithm to select the important 

and suitable algorithms. 

Our findings in this work are listed as follows: 

1) While the manual initialization based segmentation can isolate the object of 

interest more accurately, the segmentation result is partially dependent on the 

initialization. A more proximal initialization yields an improved result. Since 

manual initialization of the images found in the field is not desirable, automatic 

initialization for segmentation is more appropriate for this application. The 

available (semantic) active contour and area morphology based segmentation 

algorithms work satisfactorily on most of the images. However their performance 

reduces in certain conditions like increase in background clutter, severe 

illumination variation on the object, smaller aspect ratio of the object in 

comparison to the size of the image etc. 

2) U and L junctions help increasing the building recognition. However, since there 

are many other objects have U and L junctions frequently (such as tree), their 

performance reduces in large image datasets containing many different object 

types. 

3) While the most accepted and commonly used feature-types are SIFT and HOG, in 

this work we noticed that while both SIFT and HOG features are alike, each 

captures different information and each works better for different classification 

purposes. In particular, SIFT features can capture the information of a scene better 
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than HOG features can.  HOG features capture the pose (the structure and viewing 

angle of an object) of objects better than SIFT features can when they are both 

represented with K-means based BoW histograms in a classifier. 

4) Multiple kernel learning and Dictionary learning with maximizing mutual 

information based approaches can be employed to select the salient feature-types 

(algorithms) among a pool of algorithms. While in some individual cases they 

may not select the most optimal feature-type, on average, these approaches 

perform well on selecting the salient feature-types. 

A.3.5 Collaboration 

(sec. 4.7.5 from contract): We have collaborated with different participants on planning, 

designing and testing the applications. In particular we have had collaborations with our 

colleagues from Univ. of Missouri, Mississippi State University and Michigan Tech.  In 

addition, we have also collaborated with Mr. Harpreet Sawhney (from SRI) and with Dr. 

Reuven Meth (from Leidos). 

A.4 Software (sec. 4.8 from contract) 

All the developed software is available in the attached CDROM (media). 

A.4.1 User’s Guide 

(sec. 4.8.1 from contract): The source code for our developed software is available in the 

attached CDROM (media). 

Each individual file includes its own description in it to describe how to use the function 

and its purpose. 
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